首页>>人工智能->人工智能靠什么进行决策(2023年最新整理)

人工智能靠什么进行决策(2023年最新整理)

时间:2023-12-13 本站 点击:0

导读:今天首席CTO笔记来给各位分享关于人工智能靠什么进行决策的相关内容,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

人工智能到底是什么东西?

人工智能之父 John McCarthy说:人工智能就是制造智能的机器,更特指制作人工智能的程序。人工智能模仿人类的思考方式让计算机能智能的思考问题,人工智能通过研究人类大脑的思考、学习和工作方式,然后将研究结果作为开发智能软件和系统的基础。

人工智能的概念很宽,所以人工智能也分很多种,我们按照人工智能的实力将其分成三大类:

1、弱人工智能

弱人工智能Artificial Narrow Intelligence (ANI):弱人工智能是擅长于单个方面的人工智能。比如有能战胜象棋世界冠军的人工智能,但是它只会下象棋,你要问它怎样更好地在硬盘上储存数据,它就不知道怎么回答你了。比如第一个击败人类职业围棋选手、第一个战胜围棋世界冠军的人工智能机器人,Alpha Go其实也是一个弱人工智能。

2、强人工智能

强人工智能又称通用人工智能或完全人工智能, 指的是可以胜任人类所有工作的人工智能。一个可以称得上强人工智能的程序, 大概需要具备以下几方面的能力:存在不确定因素时进行推理,使用策略,解决问题,制定决策的能力;知识表示的能力,包括常识性知识的表示能力;规划能力;学习能力;使用自然语言进行交流沟通的能力;将上述能力整合起来实现既定目标的能力。

3、超人工智能

假设计算机程序通过不断发展,可以比世界上最聪明、最有天赋的人类还聪明,那么由此产生的人工智能系统就可以被称为超人工智能。超人工智能的定义最为模糊,因为没人知道, 超越人类最高水平的智慧到底会表现为何种能力。如果说对于强人工智能,我们还存在从技术角度进行探讨的可能性的话,那么,对于超人工智能,今天的人类大多就只能从哲学或科幻的角度加以解析了。

人工智能的原理是什么

人工智能的原理,简单的形容就是:

人工智能=数学计算。

机器的智能程度,取决于“算法”。最初,人们发现用电路的开和关,可以表示1和0。那么很多个电路组织在一起,不同的排列变化,就可以表示很多的事情,比如颜色、形状、字母。再加上逻辑元件(三极管),就形成了“输入(按开关按钮)——计算(电流通过线路)——输出(灯亮了)”

这种模式。

想象家里的双控开关。

为了实现更复杂的计算,最终变成了,“大规模集成电路”——芯片。

电路逻辑层层嵌套,层层封装之后,我们改变电流状态的方法,就变成了“编写程序语言”。程序员就是干这个的。

程序员让电脑怎么执行,它就怎么执行,整个流程都是被程序固定死的。

所以,要让电脑执行某项任务,程序员必须首先完全弄清楚任务的流程。

就拿联控电梯举例:

别小看这电梯,也挺“智能”呢。考虑一下它需要做哪些判断:上下方向、是否满员、高峰时段、停止时间是否足够、单双楼层等等,需要提前想好所有的可能性,否则就要出bug。

某种程度上说,是程序员控制了这个世界。可总是这样事必躬亲,程序员太累了,你看他们加班都熬红了眼睛。

于是就想:能不能让电脑自己学习,遇到问题自己解决呢?而我们只需要告诉它一套学习方法。

大家还记得1997年的时候,IBM用专门设计的计算机,下赢了国际象棋冠军。其实,它的办法很笨——暴力计算,术语叫“穷举”(实际上,为了节省算力,IBM人工替它修剪去了很多不必要的计算,比如那些明显的蠢棋,并针对卡斯帕罗夫的风格做了优化)。计算机把每一步棋的每一种下法全部算清楚,然后对比人类的比赛棋谱,找出最优解。

一句话:大力出奇迹!

但是到了围棋这里,没法再这样穷举了。力量再大,终有极限。围棋的可能性走法,远超宇宙中全部原子之和(已知),即使用目前最牛逼的超算,也要算几万年。在量子计算机成熟之前,电子计算机几无可能。

所以,程序员给阿尔法狗多加了一层算法:

A、先计算:哪里需要计算,哪里需要忽略。

B、然后,有针对性地计算。

——本质上,还是计算。哪有什么“感知”!

在A步,它该如何判断“哪里需要计算”呢?

这就是“人工智能”的核心问题了:“学习”的过程。

仔细想一下,人类是怎样学习的?

人类的所有认知,都来源于对观察到的现象进行总结,并根据总结的规律,预测未来。

当你见过一只四条腿、短毛、个子中等、嘴巴长、汪汪叫的动物,名之为狗,你就会把以后见到的所有类似物体,归为狗类。

不过,机器的学习方式,和人类有着质的不同:

人通过观察少数特征,就能推及多数未知。举一隅而反三隅。

机器必须观察好多好多条狗,才能知道跑来的这条,是不是狗。

这么笨的机器,能指望它来统治人类吗。

它就是仗着算力蛮干而已!力气活。

具体来讲,它“学习”的算法,术语叫“神经网络”(比较唬人)。

(特征提取器,总结对象的特征,然后把特征放进一个池子里整合,全连接神经网络输出最终结论)

它需要两个前提条件:

1、吃进大量的数据来试错,逐渐调整自己的准确度;

2、神经网络层数越多,计算越准确(有极限),需要的算力也越大。

所以,神经网络这种方法,虽然多年前就有了(那时还叫做“感知机”)。但是受限于数据量和计算力,没有发展起来。

神经网络听起来比感知机不知道高端到哪里去了!这再次告诉我们起一个好听的名字对于研(zhuang)究(bi)有多重要!

现在,这两个条件都已具备——大数据和云计算。谁拥有数据,谁才有可能做AI。

目前AI常见的应用领域:

图像识别(安防识别、指纹、美颜、图片搜索、医疗图像诊断),用的是“卷积神经网络(CNN)”,主要提取空间维度的特征,来识别图像。

自然语言处理(人机对话、翻译),用的是”循环神经网络(RNN)“,主要提取时间维度的特征。因为说话是有前后顺序的,单词出现的时间决定了语义。

神经网络算法的设计水平,决定了它对现实的刻画能力。顶级大牛吴恩达就曾经设计过高达100多层的卷积层(层数过多容易出现过拟合问题)。

当我们深入理解了计算的涵义:有明确的数学规律。那么,

这个世界是是有量子(随机)特征的,就决定了计算机的理论局限性。——事实上,计算机连真正的随机数都产生不了。

——机器仍然是笨笨的。

更多神佑深度的人工智能知识,想要了解,可以私信询问。

人工智能的工作原理是什么?

人工智能的工作原理是:计算机会通过传感器(或人工输入的方式)来收集关于某个情景的事实。计算机将此信息与已存储的信息进行比较,以确定它的含义。计算机会根据收集来的信息计算各种可能的动作,然后预测哪种动作的效果最好。计算机只能解决程序允许解决的问题,不具备一般意义上的分析能力。

简介:

人工智能(Artificial Intelligence),英文缩写为AI,它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。 人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,但没有一个统一的定义。 人工智能是对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。但是这种会自我思考的高级人工智能还需要科学理论和工程上的突破。

科学介绍:

1、实际应用

机器视觉:机器视觉,指纹识别,人脸识别,视网膜识别,虹膜识别,掌纹识别,专家系统,自动规划,智能搜索,定理证明,博弈,自动程序设计,智能控制,机器人学,语言和图像理解,遗传编程等。

2、学科范畴

人工智能是一门边沿学科,属于自然科学和社会科学的交叉。

3、涉及学科

哲学和认知科学,数学,神经生理学,心理学,计算机科学,信息论,控制论,不定性论。

4、研究范畴

自然语言处理,知识表现,智能搜索,推理,规划,机器学习,知识获取,组合调度问题,感知问题,模式识别,逻辑程序设计软计算,不精确和不确定的管理,人工生命,神经网络,复杂系统,遗传算法。

5、意识和人工智能

人工智能就其本质而言,是对人的思维的信息过程的模拟。

AI的决策与推理

潮起潮落的一个趋势,人工智能方法论是归纳+演绎,归纳就是机器学习,演绎就是知识推理,演绎当前不是很明确的,在探索中,实现人类同等智能依旧极其困难,未来只是人类的强大工具。

决策和推理,数学上的简单原理:

学习映射y=f(x);x表示输入时间序列,y是目标时间序列;f(是参数可调的映射模型)

业务问题要定义数据和场景y,x,通过训练数据估计f()参数,就是学习方法,最优的参数通常仅能近视估计

可以连续产生时序上人类人为正确的y,从而可以模拟人的智慧

人工智能需要什么基础?

当下,人工智能成了新时代的必修课,其重要性已无需赘述,但作为一个跨学科产物,它包含的内容浩如烟海,各种复杂的模型和算法更是让人望而生畏。对于大多数的新手来说,如何入手人工智能其实都是一头雾水,比如到底需要哪些数学基础、是否要有工程经验、对于深度学习框架应该关注什么等等。

那么,学习人工智能该从哪里开始呢?人工智能的学习路径又是怎样的?

本文节选自王天一教授在极客时间 App 开设的“人工智能基础课”,已获授权。更多相关文章,请下载极客时间 App,订阅专栏获取。

数学基础知识蕴含着处理智能问题的基本思想与方法,也是理解复杂算法的必备要素。今天的种种人工智能技术归根到底都建立在数学模型之上,要了解人工智能,首先要掌握必备的数学基础知识,具体来说包括:

线性代数:如何将研究对象形式化?

概率论:如何描述统计规律?

数理统计:如何以小见大?

最优化理论: 如何找到最优解?

信息论:如何定量度量不确定性?

形式逻辑:如何实现抽象推理?

线性代数:如何将研究对象形式化?

事实上,线性代数不仅仅是人工智能的基础,更是现代数学和以现代数学作为主要分析方法的众多学科的基础。从量子力学到图像处理都离不开向量和矩阵的使用。而在向量和矩阵背后,线性代数的核心意义在于提供了⼀种看待世界的抽象视角:万事万物都可以被抽象成某些特征的组合,并在由预置规则定义的框架之下以静态和动态的方式加以观察。

着重于抽象概念的解释而非具体的数学公式来看,线性代数要点如下:线性代数的本质在于将具体事物抽象为数学对象,并描述其静态和动态的特性;向量的实质是 n 维线性空间中的静止点;线性变换描述了向量或者作为参考系的坐标系的变化,可以用矩阵表示;矩阵的特征值和特征向量描述了变化的速度与方向。

总之,线性代数之于人工智能如同加法之于高等数学,是一个基础的工具集。

概率论:如何描述统计规律?

除了线性代数之外,概率论也是人工智能研究中必备的数学基础。随着连接主义学派的兴起,概率统计已经取代了数理逻辑,成为人工智能研究的主流工具。在数据爆炸式增长和计算力指数化增强的今天,概率论已经在机器学习中扮演了核心角色。

同线性代数一样,概率论也代表了一种看待世界的方式,其关注的焦点是无处不在的可能性。频率学派认为先验分布是固定的,模型参数要靠最大似然估计计算;贝叶斯学派认为先验分布是随机的,模型参数要靠后验概率最大化计算;正态分布是最重要的一种随机变量的分布。

数理统计:如何以小见大?

在人工智能的研究中,数理统计同样不可或缺。基础的统计理论有助于对机器学习的算法和数据挖掘的结果做出解释,只有做出合理的解读,数据的价值才能够体现。数理统计根据观察或实验得到的数据来研究随机现象,并对研究对象的客观规律做出合理的估计和判断。

虽然数理统计以概率论为理论基础,但两者之间存在方法上的本质区别。概率论作用的前提是随机变量的分布已知,根据已知的分布来分析随机变量的特征与规律;数理统计的研究对象则是未知分布的随机变量,研究方法是对随机变量进行独立重复的观察,根据得到的观察结果对原始分布做出推断。

用一句不严谨但直观的话讲:数理统计可以看成是逆向的概率论。 数理统计的任务是根据可观察的样本反过来推断总体的性质;推断的工具是统计量,统计量是样本的函数,是个随机变量;参数估计通过随机抽取的样本来估计总体分布的未知参数,包括点估计和区间估计;假设检验通过随机抽取的样本来接受或拒绝关于总体的某个判断,常用于估计机器学习模型的泛化错误率。

最优化理论: 如何找到最优解?

本质上讲,人工智能的目标就是最优化:在复杂环境与多体交互中做出最优决策。几乎所有的人工智能问题最后都会归结为一个优化问题的求解,因而最优化理论同样是人工智能必备的基础知识。最优化理论研究的问题是判定给定目标函数的最大值(最小值)是否存在,并找到令目标函数取到最大值 (最小值) 的数值。 如果把给定的目标函数看成一座山脉,最优化的过程就是判断顶峰的位置并找到到达顶峰路径的过程。

通常情况下,最优化问题是在无约束情况下求解给定目标函数的最小值;在线性搜索中,确定寻找最小值时的搜索方向需要使用目标函数的一阶导数和二阶导数;置信域算法的思想是先确定搜索步长,再确定搜索方向;以人工神经网络为代表的启发式算法是另外一类重要的优化方法。

信息论:如何定量度量不确定性?

近年来的科学研究不断证实,不确定性就是客观世界的本质属性。换句话说,上帝还真就掷骰子。不确定性的世界只能使用概率模型来描述,这促成了信息论的诞生。

信息论使用“信息熵”的概念,对单个信源的信息量和通信中传递信息的数量与效率等问题做出了解释,并在世界的不确定性和信息的可测量性之间搭建起一座桥梁。

总之,信息论处理的是客观世界中的不确定性;条件熵和信息增益是分类问题中的重要参数;KL 散度用于描述两个不同概率分布之间的差异;最大熵原理是分类问题汇总的常用准则。

形式逻辑:如何实现抽象推理?

1956 年召开的达特茅斯会议宣告了人工智能的诞生。在人工智能的襁褓期,各位奠基者们,包括约翰·麦卡锡、赫伯特·西蒙、马文·闵斯基等未来的图灵奖得主,他们的愿景是让“具备抽象思考能力的程序解释合成的物质如何能够拥有人类的心智。”通俗地说,理想的人工智能应该具有抽象意义上的学习、推理与归纳能力,其通用性将远远强于解决国际象棋或是围棋等具体问题的算法。

如果将认知过程定义为对符号的逻辑运算,人工智能的基础就是形式逻辑;谓词逻辑是知识表示的主要方法;基于谓词逻辑系统可以实现具有自动推理能力的人工智能;不完备性定理向“认知的本质是计算”这一人工智能的基本理念提出挑战。

《人工智能基础课》全年目录

本专栏将围绕机器学习与神经网络等核心概念展开,并结合当下火热的深度学习技术,勾勒出人工智能发展的基本轮廓与主要路径。点击我获取学习资源

请点击输入图片描述

我们再来看看人工智能,机器学习、大数据技术应用方面有哪些联系与区别

大数据、人工智能是目前大家谈论比较多的话题,它们的应用也越来越广泛、与我们的生活关系也越来越密切,影响也越来越深远,其中很多已进入寻常百姓家,如无人机、网约车、自动导航、智能家电、电商推荐、人机对话机器人等等。

大数据是人工智能的基础,而使大数据转变为知识或生产力,离不开机器学习(Machine Learning),可以说机器学习是人工智能的核心,是使机器具有类似人的智能的根本途径。

本文主要介绍机器有关概念、与大数据、人工智能间的关系、机器学习常用架构及算法等,具体如下:

机器学习的定义

大数据与机器学习

机器学习与人工智能及深度学习

机器学习的基本任务

如何选择合适算法

Spark在机器学习方面的优势

01 机器学习的定义

机器学习是什么?是否有统一或标准定义?目前好像没有,即使在机器学习的专业人士,也好像没有一个被广泛认可的定义。在维基百科上对机器学习有以下几种定义:

“机器学习是一门人工智能的科学,该领域的主要研究对象是人工智能,特别是如何在经验学习中改善具体算法的性能”。

“机器学习是对能通过经验自动改进的计算机算法的研究”。

“机器学习是用数据或以往的经验,以此优化计算机程序的性能标准。”

一种经常引用的英文定义是:A computer program is said to learn from experience (E) with respect to some class of tasks(T) and performance(P) measure , if its performance at tasks in T, as measured by P, improves with experience E。

可以看出机器学习强调三个关键词:算法、经验、性能,其处理过程如图所示。

▲机器学习处理流程

上图表明机器学习是使数据通过算法构建出模型,然后对模型性能进行评估,评估后的指标,如果达到要求就用这个模型测试新数据,如果达不到要求就要调整算法重新建立模型,再次进行评估,如此循环往复,最终获得满意结果。

02 大数据与机器学习

我们已进入大数据时代,产生数据的能力空前高涨,如互联网、移动网、物联网、成千上万的传感器、穿戴设备、GPS等等,存储数据、处理数据等能力也得到了几何级数的提升,如Hadoop、Spark技术为我们存储、处理大数据提供有效方法。

数据就是信息、就是依据,其背后隐含了大量不易被我们感官识别的信息、知识、规律等等,如何揭示这些信息、规则、趋势,正成为当下给企业带来高回报的热点。

而机器学习的任务,就是要在基于大数据量的基础上,发掘其中蕴含并且有用的信息。其处理的数据越多,机器学习就越能体现出优势,以前很多用机器学习解决不了或处理不好的问题,通过提供大数据得到很好解决或性能的大幅提升,如语言识别、图像设别、天气预测等等。

03 机器学习、人工智能及深度学习

人工智能和机器学习这两个科技术语如今已经广为流传,已成为当下的热词,然而,他们间有何区别?又有哪些相同或相似的地方?虽然人工智能和机器学习高度相关,但却并不尽相同。

人工智能是计算机科学的一个分支,目的是开发一种拥有智能行为的机器,目前很多大公司都在努力开发这种机器学习技术。他们都在努力让电脑学会人类的行为模式,以便推动很多人眼中的下一场技术革命——让机器像人类一样“思考”。

过去10年,机器学习已经为我们带来了无人驾驶汽车、实用的语音识别、有效的网络搜索等等。接下来人工智能将如何改变我们的生活?在哪些领域最先发力?我们拭目以待。

对很多机器学习来说,特征提取不是一件简单的事情。在一些复杂问题上,要想通过人工的方式设计有效的特征集合,往往要花费很多的时间和精力。

深度学习解决的核心问题之一就是自动地将简单的特征组合成更加复杂的特征,并利用这些组合特征解决问题。深度学习是机器学习的一个分支,它除了可以学习特征和任务之间的关联以外,还能自动从简单特征中提取更加复杂的特征。下图展示了深度学习和传统机器学习在流程上的差异。如图所示,深度学习算法可以从数据中学习更加复杂的特征表达,使得最后一步权重学习变得更加简单且有效。

▲机器学习与深度学习流程对比

请点击输入图片描述

前面我们分别介绍了机器学习、人工智能及深度学习,它们间的关系如何?

▲人工智能、机器学习与深度学习间的关系

请点击输入图片描述

人工智能、机器学习和深度学习是非常相关的几个领域。上图说明了它们之间大致关系。人工智能是一类非常广泛的问题,机器学习是解决这类问题的一个重要手段,深度学习则是机器学习的一个分支。在很多人工智能问题上,深度学习的方法突破了传统机器学习方法的瓶颈,推动了人工智能领域的快速发展。

04 机器学习的基本任务

机器学习基于数据,并以此获取新知识、新技能。它的任务有很多,分类是其基本任务之一。分类就是将新数据划分到合适的类别中,一般用于类别型的目标特征,如果目标特征为连续型,则往往采用回归方法。回归是对新目标特征进行预测,是机器学习中使用非常广泛的方法之一。

分类和回归,都是先根据标签值或目标值建立模型或规则,然后利用这些带有目标值的数据形成的模型或规则,对新数据进行识别或预测。这两种方法都属于监督学习。与监督学习相对是无监督学习,无监督学习不指定目标值或预先无法知道目标值,它可以将把相似或相近的数据划分到相同的组里,聚类就是解决这一类问题的方法之一。

点击我获取学习资源

除了监督学习、无监督学习这两种最常见的方法外,还有半监督学习、强化学习等方法,这里我们就不展开了,下图展示了这些基本任务间的关系。

▲机器学习基本任务的关系

请点击输入图片描述

05 如何选择合适算法

当我们接到一个数据分析或挖掘的任务或需求时,如果希望用机器学习来处理,首要任务是根据任务或需求选择合适算法,选择哪种算法较合适?分析的一般步骤为:

▲选择算法的一般步骤

请点击输入图片描述

充分了解数据及其特性,有助于我们更有效地选择机器学习算法。采用以上步骤在一定程度上可以缩小算法的选择范围,使我们少走些弯路,但在具体选择哪种算法方面,一般并不存在最好的算法或者可以给出最好结果的算法,在实际做项目的过程中,这个过程往往需要多次尝试,有时还要尝试不同算法。不过先用一种简单熟悉的方法,然后,在这个基础上不断优化,时常能收获意想不到的效果。

结语:以上就是首席CTO笔记为大家整理的关于人工智能靠什么进行决策的相关内容解答汇总了,希望对您有所帮助!如果解决了您的问题欢迎分享给更多关注此问题的朋友喔~


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若转载,请注明出处:/AI/29722.html