首页>>人工智能->人工智能如何构建

人工智能如何构建

时间:2023-12-01 本站 点击:0

导读:很多朋友问到关于人工智能如何构建的相关问题,本文首席CTO笔记就来为大家做个详细解答,供大家参考,希望对大家有所帮助!一起来看看吧!

本文目录一览:

1、如何构建一个像""红后""那样的人工智能2、人工智能需要什么基础?3、构建AI的三种方法4、如何组建人工智能团队:11个关键角色

如何构建一个像""红后""那样的人工智能

首先,我们来解释一下什么是“灾难性忘却”(catastrophicforgetting)。现有人工智能技术的底层是机器学习技术,也就是利用很多层神经网络来对问题进行量化分析。最终得到一个相对靠谱的神经网络,知道如何分解问题最合理,却不知道网络参数数值与最终结果除了正确率之外的其他逻辑意义。那么我们假设现在有两个需要学习的新生事物A和B,而我们先后用一套神经网络去学习,就会出现一个非常尴尬的局面:让人工智能学习完A之后学习B,之前为完成A任务所建立的神经网络就变得无用,需要再次从0开始积累。当神经网络学会如何解决B问题之后,A问题的解决方法却又已经被覆盖,等于“忘记”了。那种想说一件事,但是因为被打断突然忘掉了,有多郁闷你肯定懂。通俗点来说,虽然这套神经网络能够同时学习A、B两种事物,但他们从本质上来说却不是一个神经网络,因为它并不能同时完成两项事务。这个特性就好比一堵“高墙”,拦住了人工智能往通用化的方向前进。也正因为不能通用化,所以我们目前看到的人工智能还久久停留在“弱人工智能(只能完成一个或者一类实际问题)”阶段。为了解决这个问题,DeepMind此次引入了一套全新的算法体系EWC(弹性权重巩固),原理并不复杂。A、B两个任务,以及分别对应的两个神经网络依旧是A、B两个需要学习的事物,但在学习完A之后EWC算法中多出来了一步:根据神经网络中每一个神经元与结果的关系强弱,分别给他们加上一个对应的时间保护设置。当再次学习全新事物B时,A事物最关键的神经网络结构会被保留,即便少部分被覆盖,也能快速通过再次学习获得。袁行远特别指出:“这次DeepMind进展的关键,在于19个游戏用的是同一个神经网络。”单从这个成绩来看,DeepMind这次的实验已经算成功了。不得不说,这的确很像人脑的工作方式。因为人类大脑也会左右分工、大脑皮层的不同位置也会负责不同任务。处理具体问题的时候,大脑对应区域自然会运转起来。而EWC的出现,就是去衡量这些无法同时工作的神经网络应该如何分别留存。实际上,DeepMind这套算法的参考对象就是人类和哺乳动物大脑,因为他们都有巩固先前获得技能和记忆的能力。根据神经科学目前的研究成果,大脑中主要有两种巩固知识的方式系统巩固(systemsconsolidation)与突触巩固(synapticconsolidation)。系统巩固的过程中,人类大脑将快速学习部分获得的记忆转印进了缓慢学习的部分。这一转印过程有有意识的回忆参与,也有无意识回忆的参与,人类做梦时就能完成这一转印过程。而在突触巩固中,如果一种技能在此前的学习中非常重要,神经元之间连接就不会被覆盖。而这次DeepMind公布的EWC算法,实际就模拟了突触巩固。但毫无疑问,即便装备了EWC算法,人工智能目前的记忆复杂程度还远远比不上人类。是骡子是马?拉出来玩几把游戏再说既然算法有了,自然要测试一下。DeepMind选择了一个自己熟悉的项目:19款ATARI2600(一款1977年发布的经典像素游戏主机,之上有数款最经典的游戏)游戏。早在2015年,DeepMind就通过自行研发的神经网络DeepQ,在这些游戏上得分超过了人类。还是熟悉的项目,但DeepMind这回在DeepQ基础上加上了EWC算法。同时为了验证EWC算法的有效性,他们添加了一个考核条件:每种游戏只能学习2000万次,然后就切换到下一个游戏。当19个游戏全部被学习一次之后,再从第一个游戏重新开始学习。最终他们得到了下面的结果:注:SGD(蓝色)为没有加上EWC的学习结果,红色是加上EWC算法之后,singlegame(黑色)为持续对单个游戏进行学习的结果。需要额外解释一下的是,这些图表中横向坐标是学习次数,同时EWC并不是连续学习的结果。EWC每两个峰谷之间实际上已经学习了另外18个游戏。对结果做一个简单统计:在19个游戏中,总共有11个EWC成绩达到或者接近(以80%计算)singlegame的成绩。另外一方面,EWC与SGD成绩对比也能显现出很有趣的趋势:在绝大多数游戏中,两者都会在“重新学习”之后发生较明显的成绩下滑,但是EWC的成绩通常比SGD高,而且整体波动幅度会越来越小。而这恰恰证明,EWC的确记住了这个游戏怎么玩。但与此同时,我们还能发现另外一些有趣的结果:1、breakout、stargunner、Asterix这几款游戏中,数据的积累非常重要,singlegame也是在学习量积累到一定程度之后才找到其中的规律,而每个游戏只能学习2000次的限制让EWC、SGD都无法取得进展(即便我们继续增加回合数,希望也很渺茫)。2、在kangaroo这款游戏中,不同的学习尝试似乎反而促进了分数,EWC在数个回个之后曾取得多个超过singlegame的成绩(这跟人类玩游戏需要状态、灵感有点类似)。3、在demonattack、defender、spaceinvaders这几款游戏中,EWC在几个回合之后出现成绩下滑。即便后面多个回合继续研究也没有起色。这可能是由于学习次数不够,同时也有可能是因为EWC网络没有正确选择应该保留的神经网络组件的结果。这次实验证明了EWC的确能够工作。但不同游戏下表现差异比较大。如何选择需要“记忆”的神经网络,每次学习的次数如何决定?这些硬性条件同样需要算法来平衡,我们甚至可以说现在的EWC算法是残缺的。袁行远对这部分实验也指出了自己的几个看法:1、DeepMind选择ATARI2600游戏作为测试样本有其原因所在,虽然游戏种类、玩法、成绩不同,但输入都是一致的,这在一定程度上保证了神经网络的通用性质。2、这次记忆体系的构建并不会直接打通强人工智能之路,这还是一个非常漫长的道路。3、神经科学目前的积累基本已经被人工智能所“掏空”,接下来人工智能的进展还需要不断靠尝试推进。记忆铺路,让强人工智能早日来临正如上文所提到的那样,引入“记忆”最终是为了前往人工智能的终极目标——强人工智能,这也是最理想的道路之一。袁行远就此分享了一下目前他所理解的两条前往强人工智能的道路——语言与记忆:“就比如AlphaGo,它现在的确很厉害,未来肯定能超过人类。但它目前还不能做到我最希望的一件事,把它下棋的经验写出来。这样虽然它能下过人类,但是人类并不能理解它的思考,那就等于对人类没有意义。”那么怎么才能让AlphaGo学会写书呢?首先就是能够将AlphaGo的下棋经验记录下来,也就是记忆;其次还需要将这些记忆变成人类所能理解的代码、语言。当然,此次DeepMind所尝试的算法还非常有限,并不能算作一个完整的记忆体系。究竟怎么样的记忆才是人工智能最需要的?袁行远表示:“记住东西是必须的,关键是要能够变成一本一本的书,也就是能够输出一个外部可以接受的成果。这样不同的人工智能能够交换知识,人类也可以进行学习。”从时间长度来看,这些书本实际可以定义为一个个长期记忆,能够永久保存、更新就最好了。至于语言方面,彩云AI最新产品“彩云小译”就是一款人工智能驱动的翻译产品。在之前接受Xtecher采访的时候他也曾强调过:“我们目前在做的是人与人之间语言的翻译,未来实际上同样也可以作为机器与人沟通的桥梁。”

人工智能需要什么基础?

当下,人工智能成了新时代的必修课,其重要性已无需赘述,但作为一个跨学科产物,它包含的内容浩如烟海,各种复杂的模型和算法更是让人望而生畏。对于大多数的新手来说,如何入手人工智能其实都是一头雾水,比如到底需要哪些数学基础、是否要有工程经验、对于深度学习框架应该关注什么等等。

那么,学习人工智能该从哪里开始呢?人工智能的学习路径又是怎样的?

本文节选自王天一教授在极客时间 App 开设的“人工智能基础课”,已获授权。更多相关文章,请下载极客时间 App,订阅专栏获取。

数学基础知识蕴含着处理智能问题的基本思想与方法,也是理解复杂算法的必备要素。今天的种种人工智能技术归根到底都建立在数学模型之上,要了解人工智能,首先要掌握必备的数学基础知识,具体来说包括:

线性代数:如何将研究对象形式化?

概率论:如何描述统计规律?

数理统计:如何以小见大?

最优化理论: 如何找到最优解?

信息论:如何定量度量不确定性?

形式逻辑:如何实现抽象推理?

线性代数:如何将研究对象形式化?

事实上,线性代数不仅仅是人工智能的基础,更是现代数学和以现代数学作为主要分析方法的众多学科的基础。从量子力学到图像处理都离不开向量和矩阵的使用。而在向量和矩阵背后,线性代数的核心意义在于提供了⼀种看待世界的抽象视角:万事万物都可以被抽象成某些特征的组合,并在由预置规则定义的框架之下以静态和动态的方式加以观察。

着重于抽象概念的解释而非具体的数学公式来看,线性代数要点如下:线性代数的本质在于将具体事物抽象为数学对象,并描述其静态和动态的特性;向量的实质是 n 维线性空间中的静止点;线性变换描述了向量或者作为参考系的坐标系的变化,可以用矩阵表示;矩阵的特征值和特征向量描述了变化的速度与方向。

总之,线性代数之于人工智能如同加法之于高等数学,是一个基础的工具集。

概率论:如何描述统计规律?

除了线性代数之外,概率论也是人工智能研究中必备的数学基础。随着连接主义学派的兴起,概率统计已经取代了数理逻辑,成为人工智能研究的主流工具。在数据爆炸式增长和计算力指数化增强的今天,概率论已经在机器学习中扮演了核心角色。

同线性代数一样,概率论也代表了一种看待世界的方式,其关注的焦点是无处不在的可能性。频率学派认为先验分布是固定的,模型参数要靠最大似然估计计算;贝叶斯学派认为先验分布是随机的,模型参数要靠后验概率最大化计算;正态分布是最重要的一种随机变量的分布。

数理统计:如何以小见大?

在人工智能的研究中,数理统计同样不可或缺。基础的统计理论有助于对机器学习的算法和数据挖掘的结果做出解释,只有做出合理的解读,数据的价值才能够体现。数理统计根据观察或实验得到的数据来研究随机现象,并对研究对象的客观规律做出合理的估计和判断。

虽然数理统计以概率论为理论基础,但两者之间存在方法上的本质区别。概率论作用的前提是随机变量的分布已知,根据已知的分布来分析随机变量的特征与规律;数理统计的研究对象则是未知分布的随机变量,研究方法是对随机变量进行独立重复的观察,根据得到的观察结果对原始分布做出推断。

用一句不严谨但直观的话讲:数理统计可以看成是逆向的概率论。 数理统计的任务是根据可观察的样本反过来推断总体的性质;推断的工具是统计量,统计量是样本的函数,是个随机变量;参数估计通过随机抽取的样本来估计总体分布的未知参数,包括点估计和区间估计;假设检验通过随机抽取的样本来接受或拒绝关于总体的某个判断,常用于估计机器学习模型的泛化错误率。

最优化理论: 如何找到最优解?

本质上讲,人工智能的目标就是最优化:在复杂环境与多体交互中做出最优决策。几乎所有的人工智能问题最后都会归结为一个优化问题的求解,因而最优化理论同样是人工智能必备的基础知识。最优化理论研究的问题是判定给定目标函数的最大值(最小值)是否存在,并找到令目标函数取到最大值 (最小值) 的数值。 如果把给定的目标函数看成一座山脉,最优化的过程就是判断顶峰的位置并找到到达顶峰路径的过程。

通常情况下,最优化问题是在无约束情况下求解给定目标函数的最小值;在线性搜索中,确定寻找最小值时的搜索方向需要使用目标函数的一阶导数和二阶导数;置信域算法的思想是先确定搜索步长,再确定搜索方向;以人工神经网络为代表的启发式算法是另外一类重要的优化方法。

信息论:如何定量度量不确定性?

近年来的科学研究不断证实,不确定性就是客观世界的本质属性。换句话说,上帝还真就掷骰子。不确定性的世界只能使用概率模型来描述,这促成了信息论的诞生。

信息论使用“信息熵”的概念,对单个信源的信息量和通信中传递信息的数量与效率等问题做出了解释,并在世界的不确定性和信息的可测量性之间搭建起一座桥梁。

总之,信息论处理的是客观世界中的不确定性;条件熵和信息增益是分类问题中的重要参数;KL 散度用于描述两个不同概率分布之间的差异;最大熵原理是分类问题汇总的常用准则。

形式逻辑:如何实现抽象推理?

1956 年召开的达特茅斯会议宣告了人工智能的诞生。在人工智能的襁褓期,各位奠基者们,包括约翰·麦卡锡、赫伯特·西蒙、马文·闵斯基等未来的图灵奖得主,他们的愿景是让“具备抽象思考能力的程序解释合成的物质如何能够拥有人类的心智。”通俗地说,理想的人工智能应该具有抽象意义上的学习、推理与归纳能力,其通用性将远远强于解决国际象棋或是围棋等具体问题的算法。

如果将认知过程定义为对符号的逻辑运算,人工智能的基础就是形式逻辑;谓词逻辑是知识表示的主要方法;基于谓词逻辑系统可以实现具有自动推理能力的人工智能;不完备性定理向“认知的本质是计算”这一人工智能的基本理念提出挑战。

《人工智能基础课》全年目录

本专栏将围绕机器学习与神经网络等核心概念展开,并结合当下火热的深度学习技术,勾勒出人工智能发展的基本轮廓与主要路径。点击我获取学习资源

请点击输入图片描述

我们再来看看人工智能,机器学习、大数据技术应用方面有哪些联系与区别

大数据、人工智能是目前大家谈论比较多的话题,它们的应用也越来越广泛、与我们的生活关系也越来越密切,影响也越来越深远,其中很多已进入寻常百姓家,如无人机、网约车、自动导航、智能家电、电商推荐、人机对话机器人等等。

大数据是人工智能的基础,而使大数据转变为知识或生产力,离不开机器学习(Machine Learning),可以说机器学习是人工智能的核心,是使机器具有类似人的智能的根本途径。

本文主要介绍机器有关概念、与大数据、人工智能间的关系、机器学习常用架构及算法等,具体如下:

机器学习的定义

大数据与机器学习

机器学习与人工智能及深度学习

机器学习的基本任务

如何选择合适算法

Spark在机器学习方面的优势

01 机器学习的定义

机器学习是什么?是否有统一或标准定义?目前好像没有,即使在机器学习的专业人士,也好像没有一个被广泛认可的定义。在维基百科上对机器学习有以下几种定义:

“机器学习是一门人工智能的科学,该领域的主要研究对象是人工智能,特别是如何在经验学习中改善具体算法的性能”。

“机器学习是对能通过经验自动改进的计算机算法的研究”。

“机器学习是用数据或以往的经验,以此优化计算机程序的性能标准。”

一种经常引用的英文定义是:A computer program is said to learn from experience (E) with respect to some class of tasks(T) and performance(P) measure , if its performance at tasks in T, as measured by P, improves with experience E。

可以看出机器学习强调三个关键词:算法、经验、性能,其处理过程如图所示。

▲机器学习处理流程

上图表明机器学习是使数据通过算法构建出模型,然后对模型性能进行评估,评估后的指标,如果达到要求就用这个模型测试新数据,如果达不到要求就要调整算法重新建立模型,再次进行评估,如此循环往复,最终获得满意结果。

02 大数据与机器学习

我们已进入大数据时代,产生数据的能力空前高涨,如互联网、移动网、物联网、成千上万的传感器、穿戴设备、GPS等等,存储数据、处理数据等能力也得到了几何级数的提升,如Hadoop、Spark技术为我们存储、处理大数据提供有效方法。

数据就是信息、就是依据,其背后隐含了大量不易被我们感官识别的信息、知识、规律等等,如何揭示这些信息、规则、趋势,正成为当下给企业带来高回报的热点。

而机器学习的任务,就是要在基于大数据量的基础上,发掘其中蕴含并且有用的信息。其处理的数据越多,机器学习就越能体现出优势,以前很多用机器学习解决不了或处理不好的问题,通过提供大数据得到很好解决或性能的大幅提升,如语言识别、图像设别、天气预测等等。

03 机器学习、人工智能及深度学习

人工智能和机器学习这两个科技术语如今已经广为流传,已成为当下的热词,然而,他们间有何区别?又有哪些相同或相似的地方?虽然人工智能和机器学习高度相关,但却并不尽相同。

人工智能是计算机科学的一个分支,目的是开发一种拥有智能行为的机器,目前很多大公司都在努力开发这种机器学习技术。他们都在努力让电脑学会人类的行为模式,以便推动很多人眼中的下一场技术革命——让机器像人类一样“思考”。

过去10年,机器学习已经为我们带来了无人驾驶汽车、实用的语音识别、有效的网络搜索等等。接下来人工智能将如何改变我们的生活?在哪些领域最先发力?我们拭目以待。

对很多机器学习来说,特征提取不是一件简单的事情。在一些复杂问题上,要想通过人工的方式设计有效的特征集合,往往要花费很多的时间和精力。

深度学习解决的核心问题之一就是自动地将简单的特征组合成更加复杂的特征,并利用这些组合特征解决问题。深度学习是机器学习的一个分支,它除了可以学习特征和任务之间的关联以外,还能自动从简单特征中提取更加复杂的特征。下图展示了深度学习和传统机器学习在流程上的差异。如图所示,深度学习算法可以从数据中学习更加复杂的特征表达,使得最后一步权重学习变得更加简单且有效。

▲机器学习与深度学习流程对比

请点击输入图片描述

前面我们分别介绍了机器学习、人工智能及深度学习,它们间的关系如何?

▲人工智能、机器学习与深度学习间的关系

请点击输入图片描述

人工智能、机器学习和深度学习是非常相关的几个领域。上图说明了它们之间大致关系。人工智能是一类非常广泛的问题,机器学习是解决这类问题的一个重要手段,深度学习则是机器学习的一个分支。在很多人工智能问题上,深度学习的方法突破了传统机器学习方法的瓶颈,推动了人工智能领域的快速发展。

04 机器学习的基本任务

机器学习基于数据,并以此获取新知识、新技能。它的任务有很多,分类是其基本任务之一。分类就是将新数据划分到合适的类别中,一般用于类别型的目标特征,如果目标特征为连续型,则往往采用回归方法。回归是对新目标特征进行预测,是机器学习中使用非常广泛的方法之一。

分类和回归,都是先根据标签值或目标值建立模型或规则,然后利用这些带有目标值的数据形成的模型或规则,对新数据进行识别或预测。这两种方法都属于监督学习。与监督学习相对是无监督学习,无监督学习不指定目标值或预先无法知道目标值,它可以将把相似或相近的数据划分到相同的组里,聚类就是解决这一类问题的方法之一。

点击我获取学习资源

除了监督学习、无监督学习这两种最常见的方法外,还有半监督学习、强化学习等方法,这里我们就不展开了,下图展示了这些基本任务间的关系。

▲机器学习基本任务的关系

请点击输入图片描述

05 如何选择合适算法

当我们接到一个数据分析或挖掘的任务或需求时,如果希望用机器学习来处理,首要任务是根据任务或需求选择合适算法,选择哪种算法较合适?分析的一般步骤为:

▲选择算法的一般步骤

请点击输入图片描述

充分了解数据及其特性,有助于我们更有效地选择机器学习算法。采用以上步骤在一定程度上可以缩小算法的选择范围,使我们少走些弯路,但在具体选择哪种算法方面,一般并不存在最好的算法或者可以给出最好结果的算法,在实际做项目的过程中,这个过程往往需要多次尝试,有时还要尝试不同算法。不过先用一种简单熟悉的方法,然后,在这个基础上不断优化,时常能收获意想不到的效果。

构建AI的三种方法

《人工智能三部曲》读书笔记

《人工智能哲学》[美]拜伦·瑞希

译者:王斐

出版社:文汇出版社

出版时间:2020-05

人工智能AI是如何工作的呢?

构建AI有三种不同的方法。

假设你想制作一个AI告诉农民何时播种。

  在AI研究的早期,科学家认为这种方法是最有效的。

  经典AI全面考虑所有的影响因素(例如土壤类型、作物、降雨量等),并围绕这些因素建立模型,对它们进行相应的加权,从而做出决策,为农民提出播种时间的建议。

  召集一百位最有经验的农民,让他们写下他们所知道的关于种植的每一条规则。将这些规则导入系统并进行整理,然后你输入相关变量,系统将根据这些规则提出建议。这就是专家系统的开发过程。

  机器学习指的是一个过程,通过这个过程,你可以获取所有农民何时种植以及产量多少的数据,然后用一台计算机来发现规则,通过历年的数据回顾会发现,某些规则使产量最大化了。

  然而,机器学习的棘手之处在于,尽管它的建议可能行得通,但人类却无法理解。例如,“机器学习AI”可能会建议:“3月12日种玉米。”如果你问:“何出此言?”假设这个建议是叠加了很多因素得出的,也许AI就很难梳理出一个答案来回答你。

  正是这最后一个领域“机器学习”的进步推动了人工智能的发展。大型数据集合,俗称“大数据”,联合强大的计算机和精巧的算法,在很大程度上促成了当下人们对AI及其前沿进展的再度关注。

如何组建人工智能团队:11个关键角色

音乐家、化学家、物理学家能为企业的人工智能团队带来什么启发?将有很多。人们需要了解人工智能的一系列技能和角色,其中包括非技术性的技能和角色,它们将推动人工智能的成功应用。

人工智能计划的成功可能取决于艺术和哲学,也取决于数据科学和机器学习。这是因为企业有效部署人工智能需要建立一个全面的团队,其中包括来自各种背景和技能集的人员,以及非技术角色。

Ness数字工程公司首席技术官MosheKranc说,“任何人工智能计划都需要IT专家和行业领域专家的结合。IT专家了解机器学习工具包:哪些算法系列最有可能解决特定问题?如何调整特定的算法以提高结果的准确性?而行业领域专家带来特定领域的知识:哪些数据源可用?数据有多脏?机器学习算法的建议质量如何?如果没有行业领域专家的输入,IT专家可能无法回答这些问题。”

因此得出的结论是:人工智能的成功确实依赖于团队,而不是任何个人或角色。

SAS公司执行副总裁兼首席信息官Keith Collins说,“当建立一支有效的人工智能团队时,我们需要寻求行业专家或超级团队,而团队合作才会赢得胜利。多元化的学科是人工智能成功的关键。”

人工智能人才的四大核心类型

Collins认为人工智能团队需要四个核心类型的人员:

•了解业务流程对于建立真实场景和有价值的结果至关重要的人员。

•了解机器学习、统计、预测和优化等分析技术并且正确使用的人员。

•了解数据来自哪里,质量如何,如何维护安全和信任的人员。

•了解如何通过结果来实施分析的人工智能架构师。

Collins指出,与其他IT领导者和人工智能专家一样,这些核心学科或角色可以从各种背景中汲取灵感。他以音乐、化学、物理等学科为例。

他说:“这些学科鼓励人们从复杂的交互系统中理解科学的过程和思维。他们通常擅长建立良好实验所需的批判性思维技能和应用机器学习的成果。”

多元化人工智能团队的价值

多元化团队的价值范围广泛:例如,它可以帮助企业更好地应对人工智能偏见。解决业务问题(包括最大和最棘手的问题)也很重要,这可能是企业首先制定人工智能战略的原因之一。

Very公司高级数据科学家和物联网实践主管Jeff McGehee说,“人们普遍认为,多样化的意见对于解决所有复杂的问题至关重要。多样性与生活体验有关,专业背景是大多数人生活体验的重要组成部分,它可以为人工智能项目增加维度,并为寻找创新解决方案提供新的视角。”

McGehee还指出,建立人工智能或其他不同的团队需要企业的积极努力,并作为招聘和雇佣实践的一部分。企业会发现实现多样性可能不是一个可行的团队建设策略。

考虑到这一点,需要了解对于人工智能团队具有价值的一系列专家和角色,其中包括非技术角色。

1.领域专家

人们可以将这些角色和人员视为主题专家。无论使用哪个术语,都需要了解他们对企业的人工智能计划的重要性。

McGehee说,“开发人工智能系统需要深入了解系统运行的领域。开发人工智能系统的专家很少会成为系统实际领域的专家。行业领域专家可以提供关键见解,使人工智能系统发挥最佳性能。”

Ness公司Kranc指出,这些专家可以解决其所在领域针对企业和战略的问题。

他表示,行业领域专家类型取决于要解决的问题。无论所需的洞察力是在创收和运营效率还是在供应链管理方面,行业领域专家都需要回答这些问题:

•哪些见解最有价值?

•收集的有关行业领域的数据是否可以作为见解的基础?

•得出的见解是否具有意义?

以下将介绍一些特定的行业领域示例,但首先了解一下人工智能团队中的其他一些关键角色。

2.数据科学家

Jane.ai公司人工智能研发主管Dave Costenaro表示,这是人工智能团队在新建项目上工作的三个关键需求中的第一个。其示例项目包括聊天代理、计算机视觉系统或预测引擎。

Costenaro说,“数据科学家有着各种背景,如统计学、工程学、计算机科学、心理学、哲学、音乐等,通常都具有强烈的好奇心,这迫使他们深入系统中寻找和使用模式,例如他们可以为人工智能项目提供什么,确定它能做什么,并训练它做到这一点。”

3.数据工程师

Costenaro说,“程序员从数据科学家那里获得想法、模型、算法,并通过规范化代码、使其在服务器上运行以及成功地与适当的用户、设备、API等进行对话,并将它们变为现实。”

4.产品设计师

Costenaro表示,三项关键需求的最终结果也说明了人工智能团队的非技术专业知识的价值。

他说:“产品设计师也来自各种背景,例如艺术、设计、工程、管理、心理学、哲学。他们为所需和有用的东西制定了路线图。”

5. 人工智能伦理学家和 社会 学家

人工智能伦理学家和 社会 学家可能在某些部门(特别是医疗保健或政府部门)中发挥着至关重要的作用,但在广泛的使用案例中似乎可能会变得越来越重要。

McGehee说,“人工智能系统的一个重要组成部分是了解它如何影响人们,以及代表性不足的群体是否受到公平对待。如果一个系统具有前所未有的准确性,但没有产生预期的 社会 影响,它注定会失败。”

6.律师

McGehee表示,在这个新兴领域也看到了对法律专业知识的单独而相关的需求。McGehee说,“GDPR法规为制定围绕算法决策的法规树立了先例。随着世界各国对人工智能在工业中的应用越来越了解,预计将出台更多的法律。精通这一领域的律师可能是一种宝贵的财富。”

由于行业领域专家如此重要,正如Kranc和McGehee所阐述的那样,有必要研究一些行业领域的具体例子,其中包括技术和非技术领域。这些领域应该是人工智能团队建设的一部分,具体取决于企业的特定目标和用例。

Jane.ai公司的Costenaro指出,“由于人工智能通常只是增强现有商业用例的一个使能层,因此过去支持过这个用例的团队成员仍然是具有价值的,出于同样的原因也是必不可少的。”

Costenaro提供了五个可能具有价值的人工智能贡献者的角色示例,并解释了如何在人工智能环境中调整和增强现有角色。

7. 高管和策略师

Costenaro说,“企业高管领导层将需要考虑哪些业务模式可以通过人工智能实现自动化和改进,并权衡来自以下团队的新机会和风险,如数据隐私、人机交互等。”

8. IT主管

不要对非技术角色的价值感到困惑:如果没有IT,企业的人工智能战略就不会走得太远。 Costenaro指出,IT团队需要解决以下问题:“如果正在为模型培训积累和存储大量数据,那么将如何确保数据的隐私性和安全性?此外,将如何存储并从服务器到客户的设备快速可靠地提供服务?”

Costenaro补充道,这也将推动对DevOps专业人士和拥有云原生技术(如容器和编排)专业知识人员需求的不断增长。而IT部门有机会使用诸如聊天机器人之类的人工智能工具来简化内部服务。

9.人力资源领导者

Costenaro说,“与此类似,人力资源部也有很多机会通过使用像聊天机器人这样的人工智能工具来为客户提供服务,从而提高效率。”

此外,人力资源似乎很可能成为评估组织内人工智能影响的一个重要参与者,这与McGehee将伦理学家和律师等角色包括在内并没有不同。

10.营销和销售领导者

正如Kranc指出的那样,如果企业的人工智能计划与创收相关,那么应该考虑从销售和营销等领域添加领域专业知识。

Costenaro还指出,作为人工智能项目的一部分,销售和营销专业人员可能需要利用销售自动化工具和机器人流程自动化(RPA)等技术来增强他们现有的技能和流程。

11.运营专家

在整个IT部门内,运营和DevOps专业人员都有特定的领域专业知识来实施人工智能计划。Costenaro列举了以下问题作为需要在哪里运用专业知识的例子:

•哪些可以实现自动化和改进?

•如果使用机器学习模型,将如何创建新的数据收集流程以持续培训和改进这些模型?

•可以从开源存储库中获取现成的、预先训练好的模型和/或数据集,从而获得巨大的先机吗?第三方供应商提供的API服务是否会考虑一些任务和用例?

虽然人工智能可以解决一些重大问题,但也一定会产生新的挑战。这就是构成多元化团队的根本原因。

McGehee说。“具有不同背景和个性的人员关注不同的项目细节和限制因素,这很有用,因为它提高了所有重要细节的可能性,并提供了确定解决方案的整体方法。”

结语:以上就是首席CTO笔记为大家介绍的关于人工智能如何构建的全部内容了,希望对大家有所帮助,如果你还想了解更多这方面的信息,记得收藏关注本站。


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若转载,请注明出处:/AI/6785.html